Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We investigate observations of circumbinary disks (CBDs) to find evidence for an equilibrium eccentricity predicted by current binary accretion theory. Although stellar binary demographics in the Milky Way show no evidence for a preferred eccentricity for binary systems, we show that actively accreting systems lie on a predicted equilibrium eccentricity curve. We constrain our sample to only systems that have well-defined orbital parameters (e.g., eccentricity, mass ratio, inclination angle). We find observations are consistent with theory for stellar binaries that are aligned with the disk and that are separated enough that tidal circularization is negligible. This suggests that eccentricity in these systems evolves after the dissipation of the CBD, given the flat eccentricity distribution of binary systems in the Milky Way.more » « less
-
Abstract We analyze accretion-rate time series for equal-mass binaries in coplanar gaseous disks spanning a continuous range of orbital eccentricities up to 0.8 for both prograde and retrograde systems. The dominant variability timescales match those of previous investigations; the binary orbital period is dominant for prograde binaries withe≳ 0.1, with a 5 × longer “lump” period taking over fore≲ 0.1. This lump period fades and drops from 5 × to 4.5 × the binary period aseapproaches 0.1, where it vanishes. For retrograde orbits, the binary orbital period dominates ate≲ 0.55 and is accompanied by a 2 × longer timescale periodicity at higher eccentricities. The shape of the accretion-rate time series varies with binary eccentricity. For prograde systems, the orientation of an eccentric disk causes periodic trading of accretion between the binary components in a ratio that we report as a function of binary eccentricity. We present a publicly available tool,binlite, that can rapidly (≲0.01 s) generate templates for the accretion-rate time series onto either binary component for choice of binary eccentricity below 0.8. As an example use case, we build lightcurve models where the accretion rate through the circumbinary disk and onto each binary component sets contributions to the emitted specific flux. We combine these rest-frame, accretion-variability lightcurves with observer-dependent Doppler boosting and binary self-lensing. This allows a flexible approach to generating lightcurves over a wide range of binary and observer parameter space. We envisionbinliteas the access point to a living database that will be updated with state-of-the-art hydrodynamical calculations as they advance.more » « less
-
Abstract Gamma-ray burst (GRB) afterglows are emissions from ultrarelativistic blast waves produced by a narrow jet interacting with surrounding matter. Since the first multimessenger observation of a neutron star merger, hydrodynamic modeling of GRB afterglows for structured jets with smoothly varying angular energy distributions has gained increased interest. While the evolution of a jet is well described by self-similar solutions in both ultrarelativistic and Newtonian limits, modeling the transitional phase remains challenging. This is due to the nonlinear spreading of a narrow jet to a spherical configuration and the breakdown of self-similar solutions. Analytical models are limited in capturing these nonlinear effects, while relativistic hydrodynamic simulations are computationally expensive, which restricts the exploration of various initial conditions. In this work, we introduce a reduced hydrodynamic model that approximates the blast wave as an infinitely thin two-dimensional surface. Further assuming axial symmetry, this model simplifies the simulation to one dimension and drastically reduces the computational costs. We have compared our modeling to relativistic hydrodynamic simulations and semianalytic methods, and applied it to fit the light curve and flux centroid motion of GRB 170817A. These comparisons demonstrate good agreement and validate our approach. We have developed this method into a numerical tool,jetsimpy, which models the synchrotron GRB afterglow emission from a blast wave with arbitrary angular energy and Lorentz factor distribution. Although the code is built with GRB afterglow in mind, it applies to any relativistic jet. This tool is particularly useful in Markov Chain Monte Carlo studies and is provided to the community.more » « less
-
Abstract Many studies have recently documented the orbital response of eccentric binaries accreting from thin circumbinary disks, characterizing the change in the binary semimajor axis and eccentricity. We extend these calculations to include the precession of the binary’s longitude of periapse induced by the circumbinary disk, and we characterize this precession continuously with binary eccentricityebfor equal mass components. This disk-induced apsidal precession is prograde with a weak dependence on the binary eccentricity wheneb≲ 0.4 and decreases approximately linearly foreb≳ 0.4; yet at allebbinary precession is faster than the rates of change to the semimajor axis and eccentricity by an order of magnitude. We estimate that such precession effects are likely most important for subparsec separated binaries with masses ≲107M⊙, like LISA precursors. We find that accreting, equal-mass LISA binaries withM< 106M⊙(and the most massiveM∼ 107M⊙binaries out toz∼ 3) may acquire a detectable phase offset due to the disk-induced precession. Moreover, disk-induced precession can compete with general relativistic precession in a vacuum, making it important for observer-dependent electromagnetic searches for accreting massive binaries—like Doppler boost and binary self-lensing models—after potentially only a few orbital periods.more » « less
-
Abstract The astrophysical environments capable of triggering heavy-element synthesis via rapid neutron capture (ther-process) remain uncertain. While binary neutron star mergers (NSMs) are known to forger-process elements, certain rare supernovae (SNe) have been theorized to supplement—or even dominate—r-production by NSMs. However, the most direct evidence for such SNe, unusual reddening of the emission caused by the high opacities ofr-process elements, has not been observed. Recent work identified the distribution ofr-process material within the SN ejecta as a key predictor of the ease with which signals associated withr-process enrichment could be discerned. Though this distribution results from hydrodynamic processes at play during the SN explosion, thus far it has been treated only in a parameterized way. We use hydrodynamic simulations to model how disk winds—the alleged locus ofr-production in rare SNe—mix with initiallyr-process-free ejecta. We study mixing as a function of the wind mass, wind duration, and the initial SN explosion energy, and find that it increases with the first two of these and decreases with the third. This suggests that SNe accompanying the longest long-duration gamma-ray bursts are promising places to search for signs ofr-process enrichment. We use semianalytic radiation transport to connect hydrodynamics to electromagnetic observables, allowing us to assess the mixing level at which the presence ofr-process material can be diagnosed from SN light curves. Analytic arguments constructed atop this foundation imply that a wind-drivenr-process-enriched SN model is unlikely to explain standard energetic SNe.more » « less
-
Abstract We develop a suite of 3D hydrodynamic models of supernova remnants (SNRs) expanding against the circumstellar medium (CSM). We study the Rayleigh–Taylor instability forming at the expansion interface by calculating an angular power spectrum for each of these models. The power spectra of young SNRs are seen to exhibit a dominant angular mode, which is a diagnostic of their ejecta density profile as found by previous studies. The steep scaling of power at smaller modes and the time evolution of the spectra are indicative of the absence of a turbulent cascade. Instead, as the time evolution of the spectra suggests, they may be governed by an angular mode-dependent net growth rate. We also study the impact of anisotropies in the ejecta and in the CSM on the power spectra of velocity and density. We confirm that perturbations in the density field (whether imposed on the ejecta or the CSM) do not influence the anisotropy of the remnant significantly unless they have a very large amplitude and form large-scale coherent structures. In any case, these clumps can only affect structures on large angular scales. The power spectrum on small angular scales is completely independent of the initial clumpiness and governed only by the growth and saturation of the Rayleigh–Taylor instability.more » « less
-
We have performed numerical calculations of a binary interacting with a gas disk, using 11 different numerical methods and a standard binary−disk setup. The goal of this study is to determine whether all codes agree on a numerically converged solution and to determine the necessary resolution for convergence and the number of binary orbits that must be computed to reach an agreed-upon relaxed state of the binary−disk system. We find that all codes can agree on a converged solution (depending on the diagnostic being measured). The zone spacing required for most codes to reach a converged measurement of the torques applied to the binary by the disk is roughly 1% of the binary separation in the vicinity of the binary components. For our disk model to reach a relaxed state, codes must be run for at least 200 binary orbits, corresponding to about a viscous time for our parameters, 0.2(a2ΩB/ν) binary orbits, whereνis the kinematic viscosity. The largest discrepancies between codes resulted from the dimensionality of the setup (3D vs. 2D disks). We find good agreement in the total torque on the binary between codes, although the partition of this torque between the gravitational torque, orbital accretion torque, and spin accretion torque depends sensitively on the sink prescriptions employed. In agreement with previous studies, we find a modest difference in torques and accretion variability between 2D and 3D disk models. We find cavity precession rates to be appreciably faster in 3D than in 2D.more » « less
-
Abstract Active galactic nuclei (AGN) show a range of morphologies and dynamical properties, which are determined not only by parameters intrinsic to the central engine but also their interaction with the surrounding environment. We investigate the connection of kiloparsec scale AGN jet properties to their intrinsic parameters and surroundings. This is done using a suite of 40 relativistic hydrodynamic simulations spanning a wide range of engine luminosities and opening angles. We explore AGN jet propagation with different ambient density profiles, including r −2 (self-similar solution) and r −1 , which is more relevant for AGN host environments. While confirmation awaits future 3D studies, the Fanaroff–Riley (FR) morphological dichotomy arises naturally in our 2D models. Jets with low energy density compared to the ambient medium produce a center-brightened emissivity distribution, while emissivity from relatively higher energy density jets is dominated by the jet head. We observe recollimation shocks in our simulations that can generate bright spots along the spine of the jet, providing a possible explanation for “knots” observed in AGN jets. We additionally find a scaling relation between the number of knots and the jet-head-to-surroundings energy density ratio. This scaling relation is generally consistent with the observations of the jets in M87 and Cygnus A. Our model also correctly predicts M87 as FRI and Cygnus A as FRII. Our model can be used to relate jet dynamical parameters such as jet head velocity, jet opening angle, and external pressure to jet power, and ambient density estimates.more » « less
-
Abstract Kilonovae, the ultraviolet/optical/infrared counterparts to binary neutron star mergers, are an exceptionally rare class of transients. Optical follow-up campaigns are plagued by contaminating transients, which may mimic kilonovae but do not receive sufficient observations to measure the full photometric evolution. In this work, we present an analysis of the multiwavelength dataset of supernova (SN) 2025ulz, a proposed kilonova candidate following the low-significance detection of gravitational waves originating from the potential binary neutron star merger S250818k. Despite an early rapid decline in brightness, our multiwavelength observations of SN 2025ulz reveal that it is a type IIb SN. As part of this analysis, we demonstrate the capabilities of a novel quantitative scoring algorithm to determine the likelihood that a transient candidate is a kilonova, based primarily on its three-dimensional location and light-curve evolution. We also apply our scoring algorithm to other transient candidates in the localization volume of S250818k and find that, at all times after the discovery of SN 2025ulz, there are ≥4 candidates with a score comparable to SN 2025ulz, indicating that the kilonova search may have benefited from the additional follow-up of other candidates. During future kilonova searches, this type of scoring algorithm will be useful to rule out contaminating transients in real time, optimizing the use of valuable telescope resources.more » « less
An official website of the United States government
